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Introduction

Silicon is now experiencing a new phase as a functional material. In fact
considerable effort is being devoted on the development of efficient silicon

light emitting material [1, 2, 3, 4].

Light emission processes in silicon are clearly related to quantum con-
finement effects, thus Si devices based on confined structures, like quantum
layers, quantum wires or quantum dots, have been the subject of intensive
investigations by several research groups [2, 3, 4]. Silicon-based heterostruc-
tures form one of the most promising classes of such systems because of their
easy compatibility with conventional silicon-based integrated circuit technol-
ogy.

Superlattices, in particular, are quantum structures made of a periodic
array of two alternating materials with different bandgaps such as, for ex-
ample, Si/SiOy or Si/CaFs. The alignement of the band edges for electrons
(and holes) produces a periodic step-like potential that follows the struc-
ture of the superlattice. Superlattices were proposed, for the first time, by
Esaki and Tsu in 1970, in order to observe Bloch oscillations. Superlattices
are a suitable structure because the crystal period, along one direction, is
considerably increased thus the length of the brillouin zone, along the same
direction, is strongly reduced and high field effects, such as Bloch oscillations
and negative differential conductivity, can be observed at lower electric field

than in bulk materials. Due to the technological progress in growing tech-
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niques such as molecular beam epitaxy (MBE) or chemical vapour deposition
(CVD), nearly perfect layered low dimensional structures can be produced
and quantum effects can be observed experimentally. Bloch oscillations have
been observed experimentally in superlattices in 1992 [5] and nowadays su-

perlattices are used for several kind of devices.

In particular Si/insulator multiple quantum wells or superlattices (SL),
where calcium fluoride (CaF5) or silicon dioxide (SiOy) were used as insu-
lating material, have been studied from both experimental and theoretical
points of view, with a particular emphasis on their photoluminescence prop-
erties [6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In these systems the
thickness of the silicon layers lies in the nanometer range. It is interesting to
note that most of the experimental work was originally based on amorphous
silicon films; however well defined crystalline silicon superlattices are now

available [21].

Beside photoluminescence, also electroluminescence has been observed
both in Si/CaF, and Si/SiO, superlattices [22, 23, 24, 25, 26, 27]. Since
the optimization of the electroluminescence is related to the carrier injection
efficiency into the Si quantum layers, it is very important to understand the
electrical transport properties of these structures. Until now this has been
performed by computing current-voltage characteristics both for Si/CaF,
[28, 29] and Si/SiO, [30] multiple quantum wells through model calculations,
where electron and hole tunneling between adjacent wells is evaluated within
the Wentzel-Kramers-Brillouin approximation [31] or by modeling charge car-
rier transport across the heterostructures by means of an equivalent circuit
[32]. From the numerical results a number of simple conclusions useful to
optimize physical parameters in order to achieve their maximum electrolu-

minescence efficiency has been derived.

Our aim here is to investigate the transport properties of Si/SiOy super-

lattices through a Monte Carlo simulator in order to study the best response
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to an applied electric field. In the first chapter, the theoretical framework
used for calculating the electronic structure and the electron-phonon interac-
tion probability is presented. The second chapter concerns vertical transport
in the system under investigation while chapter 3 describes transport phe-
nomena in the same superlattice, when a parallel component is added to
the vertical electric field. This simulation is performed using a miniband
transport approach.

Some considerations [33] about the particular structure and the electric
fields applied lead to identify different transport regimes, in particular it
can be deduced that the miniband transport approach is not a suitable de-
scription for high electric fields and a different description is needed for a
transport study. The fourth chapther is an investigation of transport using
the quantum description of the electronic states provided by the Wannier-
Stark functions. Then, a description of a proposal for obtaining a superlattice
based device, able to have high electroluminescence, is described.

The last chapter is very different from the main topic of the thesis. An
investigation of single electron transport in quantum wires is performed. In
particular, the simulated device has been proposed in order to perform the
basic operations needed for quantum computation and a surface acoustic
wave potential has been introduced in order to study its effect on the func-
tionality of the device. A more specific introduction to this argument is

provided in the first section of the chapter.
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Chapter 1

Superlattice bands and phonons

The aim of this chapter is to present the theoretical modeling of a low-
dimensional structure. In particular, in order to perform transport calcu-
lations, we need to know electrical and vibrational properties of the struc-
ture under investigation. In order to describe the electronic structure of
the superlattice, we have chosen the envelope function approximation, while
the vibrational properties are described within the confined optical phonon

framework.

1.1 The envelope-function approximation

Let us consider an electron moving in a superlattice defined by the periodic
potential ﬁSL(z), the complete Hamiltonian of the system is

h2

~2 o~ ~
Qmek + Vo (r) + Usp(2) (1.1)

H=-

where VCT is the crystal potential. We make the assumption that the crystal
potential V is the same all over the superlattice and, therefore, that the
changes in the different materials are included in the U, sr(z) term.

It is possible to suppose, for the wave function of the system, an expansion
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using the solutions (Bloch functions) of the crystalline potential, as follows:

0y =2 Cuseltbu i) (1.2)
n' k'
then, substituting this wave function into the Schrédinger equation H (r)|¥) =

E|V) an multiplying by (¢, k|, we obtain
ETL (k)cﬂ,k + Z Cn’,k’ <wn,k‘U|¢n’,k’) = ECn,k’ . (13)
n' k'
The term in the sum can be analyzed writing down the Fourier expansion
of the periodic superlattice potential U (r) = Yoo Uge'®*, where G are the
vectors in the reciprocal superlattice space. With this substitution the above

equation becomes

. 1 1 G
Oliwae) = Fy7 22U D e e
G n

<wn,k

Ui i) (1.4)

where u is the periodic part of the Bloch function, andVj is the volume of the
unit cell. Now, taking into account the properties of the delta function that

arises from the sum L > eik-k+Gn = 4., o and defining the quantity

! .
Avkre = 7 (Un k|t k@), the eq. 1.3 now can be written

Ea(K)Cak+ Y. UcCuwiicAiiig = ECnx . (1.5)
n' k—G

Now, the first approximation is to suppose
Aﬁ:ﬁ+(} = Aﬁ:ﬁ = 5n,n’ . (1'6)

In other words we neglect interband interactions; moreover, we suppose
that the product (u, x|un k+g) does not change appreciably for different G.

Within this approximation the initial Schréodinger equation (1.3) is now:

Ey(k)Cox+ Y UcCryx-c = ECpx - (1.7)
G
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The eigenstate 1.2 is to be modified according to the hypothesis that electrons
are near a band minimum, and that we are neglecting interband interactions.

We can thus write

W) ~ ) " Crx
k

Vnx) = Z Cn,keikr|un,k> ~ Fu(r)|tn o) » (1.8)
k

1 ik
5 Coge (1.9)
Y

having introduced the envelope function . By applying the Fourier anti-

Fu(r) =

trasform to eq. 1.7, we obtain the Schrodinger equation whose solution is

the envelope function
B (—iV) + ﬁ(r)} Fo(r) = EF,(r) ; (1.10)

in this equation, En(—iV) is the energy operator of the crystal, that, within

the parabolic band approximation, turns out to be [34]

. ~ R~ R\ -

s

In this last formula, (%) _is the inverse effective mass tensor, that cor-
responds to the curvature Z(,)Jf the band in ky, and describes the parabolic
approximation of the band shape near this point. Thus, the final equation
to solve is (we neglect the constant energy term)
1 ~

<EV%V + U(z)) F=EF, (1.12)
that is a crystal-like equation. This equation describes the motion of an
electron of mass m* in a periodic potential U , and the envelope function F
is the Bloch eigenstate of this Hamiltonian. From a mathematical point of
view, the envelope function really envelopes the crystal periodic part u of the
Bloch function.

Now we can approcah the problem of the superlattice potential. The

physical meaning of the envelope function is evident in Fig.1.1.
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L

Bloch + evanescent
envelope

/\f\ﬂmﬁf

T

Bloch wave

bulk region l interfacel bulk region

Figure 1.1: Physical meaning of the envelope function: the envelope function

(dashed line) is the mathematical envelope of the Bloch wave (continuous line) of

the superlattice. Moreover the interface boundary condition is shown. (From [35])

1.2 Current conserving boundary conditions

In a superlattice, the potential U is obtained with the superposition of dif-
ferent materials. This superposition gives rise to a sharp interface potential,
owing to the different conduction band energies. The conduction-band effec-
tive mass tensor will be, in general, different in the two materials (m, for the
first material and m;, for the second one), then it is easy to understand that
the interface continuity of the derivative of the wave function Vi, = Vi, is

no longer the right condition since the current is not conserved:

= —;—iRew;wa) (1.13)
J, - —%Rew:wb), (1.14)

are different.

If we look at eq. 1.12, we have to introduce the right z-dependence to the
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effective mass, then the system Hamiltonian is now

Are-To Ll gy U(r) (1.15)
2 " m(z) i .

From which the new current conserving boundary condition at the interfaces

can be deduced:
1 1
vaa(ro) = %Vwb(ro) . (116)

In order to obtain the right solution of the superlattice potential, this condi-
tion has to be used together with the continuity of the wave function at the
interface. From these copnditions J, and J, as given in eq.(1.13) and (1.14)

are equal.

1.3 Solution of the Kronig-Penney potential

As introduced in the previous section, the superlattice potential is determined
by the conduction band offset of the materials used. In particular, if we
consider intrinsic semiconductors with sharp interfaces, band bending at the
interfaces can be neglected and the structure potential U in eq. 1.15 can be

modeled using a Kronig-Penney square-well potential:
U(z) = , (1.17)

whose solution can be written, in the general case, as

pey = T emlon T Reenlon), - DEEE0 g
Yp(2) = Apsin(fz) + Bycos(fz) , —b<2<0

where o = 2% F and 2 = 25t (E — V;); in the energy range where 8 < 0

the solution is written in terms of hyperbolic functions, so it follows an
exponential behavior. Now the current and wave function continuity have

to be taken into account. An other condition derives from the consideration
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that the superlattice potential is periodic and the wave function has to obey
the Born-Von Karman condition of periodicity ¢ (z + Nd) = 1(z); thus it is

possible to verify a Bloch theorem that states

V(2 +nd) = Cpp(2) = "p(2) = e (2) | (1.19)
where k, = gn = ]2\]—7;71 is the pseudomomentum along the z direction of the

superlattice minizone.

The linear system resulting from these conditions is

e

B, = B,
@ A = iAb
< Mg my

Agsin(aa) + B, cos(aa) = €@+ [— Ay sin(3b) + By cos(5b)]
2 A, cos(aa) — ;2 Bysin(aa) = ") m%Ab cos(Bb) + m%Bb sin(3b)
(1.20)

As usual, the only non trivial solution of the system exists when the deter-

minant of the coefficient is zero: this secular equation is
cos q(a + b) = cos(aa) cos(fb) — X sin(aa) sin(5b) (1.21)

2,2 322
. a“myp+p m
with X = %™ ma

2afmaemy

When E < U, (the barrier height) we can write § = i/5_ obtaining the new

expression for the above equation

cos ¢(a + b) = cos(aa) cosh(B_b) — X sin(aa) sinh(S_b) (1.22)

a?m?— 2 m?2
where now X = 2 ——2,
2iafB_mgmy

1.4 Band structure

The equation derived in the previous section has no analytical solution and

it has been solved with numerical methods. An approximated analytical
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solution, very useful for transport calculations, is provided by the tight-
binding theory. This method is in general used to calculate crystal band
structure and we can successfully apply it to our superlattice problem by
treating every quantum well of the structure as a crystal cell, as shown in
the previous sections.

The central idea of this approach is to consider infinitely far quantum
wells, so that they cannot interact with each other. In this situation, the
solution is an infinite set of degenerate levels, and the single-quantum-well

problem is represented by the following Hamiltonian
T +V(z — nd) xj(z —nd) = €;x;(z — nd) , (1.23)

where n is the index of the well and j leabels the well state. When the
distance d between the wells is reduced, their mutual interaction is no longer
negligible and the degeneracy disappears giving rise to a continuum energy
band. It is now sensible to guess for the many-quantum-well wave function

a combination of single-well solutions
U,k (2 Z ey (2 — nd) . (1.24)

It is easy to show that this functlon satisfies the Bloch theorem. In the
following a one-band model is taken into account, and the Dirac formalism
is introduced, so that the wave function are now written U, (2) = |U),
X;j(z —nd) = |z — nd). Now it is useful to introduce in the Hamiltonian the
potential as the sum of all the square well potential

VSR( ) = z—nd +Z [ (z —1d) — VO] , (1.25)

l#n
and multiplying by (z —md|, after simple calculations we get to the following

result:

Z Z eikznd<2 — md\f}(z —ld)|z — nd) =

n l#n
= [E;(k,) — €] Z e (7 — md|z — nd) . (1.26)
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The key point of the tight-binding approach is to neglect next-nearest-
neighbor coupling; this hypothesis is reasonable when barriers are suffi-
ciently strong to confine the single-well wave function mostly into only one
well; moreover, since the above Hamiltonian is invariant for translations, we
can consider n = (0. This means that the indexes can assume values only
m, | = —1, 0, +1. The remaining terms can be rewritten, using symmetry

considerations, with the notation
r; = {(z]z—d) = (2|2 + d) (1.27)
s; = (ZV(z—d)2) = (|V(z+d)|2) (1.28)
t; = @V()z—d)=(&V(2)z+d) . (1.29)

N

These terms are, respectively, the overlap integral, the shift integral and the
transfer integral. In general the overlap term is negligible with respect to the

other terms, so the final form for the miniband is now
Ej(kz) =€ — S — Qtj COS(kzd) . (130)

Moving now to three dimensions, the Schrodinger equation is
H= ﬁiLﬁ- +U(z) . (1.31)
2m} .
Since the potential energy U depends only on the growing direction z of the
superlattice, the problem can be separated along the three space directions,
resulting in two free-particle equations, along the xy plane, and a Kronig-
Penney problem along the growing direction. The solution of the problem

can be written as

U, () = Fjp, (z)e " Ferthon) (1.32)
E;jk)=E; +— L.

where the envelope function Fj, (2) and the energy F;(k,) are solution of

the Kronig-Penney potential. In particular the envelope function is obtained
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with computer calculation while for the energy spectrum the Tight-Binding

model is used

E](k'z) = gj — Ej COS(Ifzd) 3 (134)

in this form we have defined €; = ¢;—s; as the central energy of the miniband,

and t; = 2t; its half amplitude.

Since the aim of this work is to study transport properties of Si(100)/SiO,
superlattices, the particular band structure of silicon has to be taken into ac-
count. The ellipsoidal shape of the band minima is accounted for by the
different effective masses in eq.(1.33). Moreover, the bulk silicon band struc-
ture shows six different energy minima, located along the (100) symmetry
directions, at 0.8 G from I' point. Since the growing direction of the su-
perlattice is the (001) direction of Si, the effective mass tensor results to be
diagonal in the superlattice coordinates and the Hamiltonian is still separa-
ble along these directions (the case of silicon grown along any direction is
treated in appendix B.1). The eq.(1.33) has to be applied to each of the six
band minima of silicon, then the more general expression for the superlattice
miniband structure is now:

R, h?

(ky — kzo) + %(kz —kgo) + [€ — 15 cos(k.d)]  (1.35)
v

E¢ (k) = 5

where ky is the coordinate of the minimum of the a-th valley of silicon, €}

and fg‘ are obtained from the Kronig-Penney model for each valley.

It is easy to understand that the four minima located along the x and
y directions remain in the same position, while the two minima along the
growing direction do not: they are refolded into the same (double degen-
erate) miniband at z = 0 owing to the superlattice potential. The energy
dispersion obtained with the above theory for the Si(100)/SiO, superlattice

is represented in Fig.1.2.
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0.243 —
b 0242 — —
0.25- — [
................................................. 0.241 — 7
| i band 3 .
______________________ opal L 1 11
02— —
T T T T T T T =
] ~ 0216/~ band2 7
> L ’ 4
A 7
0.214 - 4 —
0.15— — band 1 (Gamma) N E‘n [ 7 i
Q
-- band 3 (Gamma) | 5 0212 /’ |
— — band 2 (off Gamma) L // 4
— e —
0.1 — 0.21 I ’//,
i o208 L o+ L 1
0052 ] 0.0608 —————7
0.0606 [~ band 1 -
1 0.0604 —
T R E P I N
0 0.0602
0 0.5 1 0 02 04 06 08 1
k, (arb. units) k, (arb. units)

Figure 1.2: k, dispersion of the minibands. The dashed line represents the z
dispersion of the (100) and (010) valleys. Note the different scales in the three

figures on the right showing enlargements on the minibands.

1.4.1 Tunneling effective mass

In order to solve the energy problem for the Si/SiO, superlattice, the current-
conserving boundary condition has to be satisfied: this means that we have
to find out a value for the electron effective mass in the SiO, regions. In
particular, in our calculation, the barrier energy is higher than the electron
energy, so it is impossible to define the effective mass for the oxide layer,
in the traditional way as the band curvature, since there is no band. On
the other hand, experiments have been performed measuring the tunneling
current through oxide barriers where the effective mass is used as a parameter
to fit theory on the experimental results. This value is called “tunneling
effective mass”, and takes into account all the interactions, due to the barrier
material, that are not explicitly included in the theory. Some values found
in the literature are m* = (0.29 + 0.02) m,,; [36], m* = (0.30 & 0.02) my; [37].
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In our calculation we use m* = 0.30 mg;.

1.5 Electron-phonon interaction

In order to make a complete study of the transport properties of the sys-
tem, the analysis of the scattering mechanisms, acting on electron motion, is
required.

In principle we can suppose that the superlattice is characterized by sharp
interfaces between the two materials that compose it, thus eliminating the
effect of the surface roughness. Moreover, since we consider the superlattice
made with intrinsic semiconductors, it is possible to neglect impurity scat-
tering. The carrier-carrier scattering is not included in this model since it is
not relevant at the carrier concentration used in this work. The only scat-
tering mechanism introduced in the model is the optical phonon scattering.
Acoustic phonons are not taken into account because their scattering rate is
much lower than optical phonon rate, at the simulated temperature.

Optical phonons in superlattices are generally confined [38]. This means
that the silicon layers will show optical frequencies typical of bulk silicon and
oxide layers will behave like bulk oxide. We can explain this behavior thinking
abut the properties of phonons: the dispersion of optical phonon modes is
almost flat so it is possible to define a very narrow energy region, typically
identified with a single energy value. This energy is generally different for
different materials, in particular silicon and silicon dioxide show very different
phonon energies. This means that a phonon mode propagating in silicon
with a particular energy, cannot propagate through a SiO, layer because the
motion at the same energy is forbidden. This situation is equivalent to a
mechanical boundary condition. Moreover, since the phonon branch is very
flat, the corresponding group velocity is very low and the lattice excitation

does not propagate along the material and the vibration remains confined
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within the same layer. This picture results close to the einstein model for
phonons. A representation of phonon modes is provided in Fig.(1.3) where
it is possible to observe confining and interface decay of optical phonons in
Si/Ge superlattices.

Since Si0O, is a polar material, polar optical phonons will be included due
to oxide slabs, while for silicon we have to take into account only deformation
potential phonons.

The electron-optical phonon interaction is treated using the time-dependent
perturbation theory in both semiclassical and Wannier-Stark transport cal-

culations. The complete Hamiltonian is
ﬁ:ﬁSL+ﬁé_ph (136)

where fISL is the effective hamiltonian for the electron in the superlattice

ocm™)

L e e e B S B B L e e e S A B
L

ooy X S Ge S Ge i 0 z

@) (b) (C)
Figure 1.3: Representation of optical phonon confinement. From this figure it
can be deduced that optical phonons are confined in the layers while acoustic

phonons are extended in the whole system. From [39]



1.5 > Electron-phonon interaction 19

potential, and H éfph is the electron-phonon interaction

H! =Y c(q) (aqe™™ + ale™r) | (1.37)

q

according to the Frolich theory [40]. For deformation potential and polar

potential respectively we have

he’w (11 q?
2
- IR . S 1.
cdef(q) 2V€0 (€+ €_> (q2 _ q2D)2 ( 38)
h(D;k)?
ua) = P (139

where w is the phonon frequency, €., e_ are the high and low frequency rela-
tive dielectric constant, q, is the screening wave vector, D;k the deformation
potential coupling with phonons, V' is the crystal volume and p is the mate-
rial density. Detailed calculation of the transition rates will be performed in
the following chapters.

Since silicon is a non-polar material, electrons will interact with the lattice
only via the deformation potential.

In silicon dioxide, two polar optical modes are present at different en-
ergies, with different coupling constants. These two modes are introduced
in the simulations as a single mode at intermediate energy with coupling

constant equal to the sum of the original constants.
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Chapter 2

Vertical transport in Si/SiO-

superlattices - Extended states

2.1 Transport phenomena in superlattices

The sinusoidal shape of the miniband, and the reduced dimension of the Bril-
louin zone, give rise to two important phenomena, typical of the superlattice
structure that we are now going to describe: Bloch oscillations and negative
differential conductivity.

Let us consider an electron in a one-dimensional miniband, with an elec-
tric field applied along this direction z. Using a semiclassical aproximation
for the electron, such that the wave packet is well localized both in real and in
reciprocal space, we can describe the motion of the electron as a semiclassical
particle where

dk

= — _¢E :
& e (2.1)

and the energy of the particle is the miniband e(k). If the electric field is
constant in time, the solution is

el

kE(t) =k
(t) 0+h

’ (2.2)
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that is the wave vector increases linearly with time. If no scattering mecha-
nism is present, the electron travels through the whole minizone in a time

_2m/d
~ eE/h’

B (2.3)

and when it is at the minizone boundary, the electron wave vector is changed
by a reciprocal lattice vector. In this way, the wave vector will appear at
an opposite point of the minizone nd the process will repeat. The resulting
motion will have an oscillatory behavior and this phenomenon is known as
Bloch oscillation. The law of motion can be calculated using the miniband
shape (eq.1.34)

) = /0 o(#)dt’
[ Laditrn,,

h dk
= 5
— %d i (%dt') dt
t
= 5 [1 — cos(wpt)] . (2.4)

This equation describes an harmonic oscillation in real space, with an am-

plitude

1
eE
It is evident that this amplitude depends upon the miniband width and the

(2.5)

applied electric field: with higher field, the oscillation becomes more localized
in space.

As said before, the Bloch oscillation occurs in absence of scattering mech-
anisms, or, at least, with a scattering rate lower than the period of the oscil-

lation. This condition can be written as

where T is the mean scattering time and wp = %—g
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Bloch oscillations where predicted by Bloch in 1928 [41], but they have
not been observed until 1992 [5]. The reason is that before superlattices were
built, the Brillouin zones were not sufficiently narrow to fulfill the above con-
dition (eq.2.6). Moreover the low dimensionality of such structures has the
effect of lowering the strength of the scattering mechanism, thus increasing

T.

The other phenomenon that typically occurs in superlattices is the nega-
tive differential conductivity at high electric fields. The first theory proposed
to describe band transport with scattering mechanisms in superlattices was
developed in 1970 by Esaki and Tsu [42]. In their one dimensional picture,
each scattering event is supposed to dissipate entirely the electron energy and
momentum, so the carrier is scattered to the center of the minizone. This
interaction occurs with a mean time 7gr, dependent on on the scattering
mechanism and temperature. If the electric field is low, electrons are scat-
tered before reaching the zone boundary, but when the field increases, they
can perform one or more Bloch oscillations before being scattered, so the
drift velocity decreases at high electric fields. This is known as the negative

differential conductivity (NDC) regime’.

The probability that an electron in a state k is scattered after a time ¢
within the time dt is P[k(t)]dt = e~ % (this is the product of the probability
to have not been scattered until time ¢ and to suffer a scattering within
time interval d¢) and the mean velocity of the electron can be obtained by

integrating the phase velocity in time, using this probability:

¢ dt
Vg = ve TET —
0

T

[ e 1 delk(2)]
- /O T

LThis NDC is a different phenomenon with respect to the one due to the presence of

upper valleys
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td [ _ ¢ |
= = e BT sinwgtdt
Th J,

Umaz
= , 2.7
wpTer + (WBTET) ™! (2.7)

where eq.(2.2) has been used and v, = %d. At low electric field (wpTpr < 1)

the first denominator term can be neglected and the velocity is

etd*r
VET| = UmazWBTET = 7E (2-8)
while for high fields (wpTgr > 1)
Umazx E 1
'UE‘TT = = — . (29)

wpTer €Tk

The highest drift velocity is obtained at wg7Tgr = 1, the corresponding elec-

tric field is E, = —— and the value is v = tmez Tt is possible to write the

E€ETET

drift velocity as:

1 1 1
= + . (2 . 10)
VET VET| VETH

2.2 Phonon transition probabilities

Phonon scattering is treated within the first-order time-dependent perturba-

tion theory using the Fermi Golden Rule

—~ 2
Plnk;n', X)) = 2% o, K| H'n, )| 6 [Ew(K) - B, (k)] . (2.11)

For simplicity we can indicate M;;(kk') = (j,k'|H'|i, k) that describes the
particular scattering mechanism. In order to obtain the total scattering prob-
ability for an electron in the state (i,k)? with every final state (j,k’), the

equation above has to be integrated over k' and to be summed over j:

_27r

V |2 ! !
009 =53 ey [ 1310 (B,0) = Ei(0) F e sg) 0K

(2.12)

2j is the miniband number and k is the pseudo-momentum in the minizone
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The following calculation will be performed supposing that the matrix ele-
ment M is independent of k' since, as we will see, this is the general case
for our simulation (the specific dependence upon k' will be taken into ac-
count in succecive step of the simulation). Moreover, since we are including
only optical phonon scattering, w, q/_x) = wep can be considered constant all
over the Brillouin zone. We do not calculate the sum over the band index,
since we are interested in the total scattering probability separately for each

final-state miniband. The total scattering probability now becomes
2 s V 5 , ,
Lij(k) = — [ M| 2y (E;(K') — Ei(k) F hwep) dk . (2.13)

Using the standard definition for the density of states, and using the energy

FE as variable, the above expression becomes
7
Iy(E) = ﬁ|Mi,j|2Dosj(E + hwep) - (2.14)

The development of the calculation for DOS,;(E) is shown in the following,
where by using the miniband expression calculated in eq.(1.35), and applying

the following ellipsoidal transformation

T : \/1m_](]€y kj ) — \/Lmiok” sin ¥ (215)

kI = ki

we now obtain

DOS-( )—

= 47r3 /dﬁ/dlﬂ_/ [ — H - Gj +tj COS(kzd):| kHdk‘H
V\/mjxm o B2 k?
= ’ /d/u/ [E - —k” — e+ ¢ cos(kzd)] d (—”)

27T2h2 2m0

V\/mimj o0 , ,
= 7‘”/(1@/ §[E—Y — €+t cos(k,d)] dY, (2.16)
0

272 h?
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h2k2
and integrating along the variable Y = W(l]l we get the density of states as

J ™
d

Va/mimy i S
DOS;(E) = 7/ O [E — € +t/ cos(k.d)] dk, . (2.17)

The step function arises from the ¢ function since its integral is one when
the integration interval contains the value zero. In order to perform the last
step, some more considerations are needed: it is possible to separate the

integration in three energy regions

e E <€ —|t/|: the argument of the step DOS is negative, so the function

is always zero in the minizone;

e £ > ¢ + |t/] : the argument of the step integral is positive and the

function is equal to 1;

o ¢/ — |t/| <E <€+ |t : the argument of the step function is positive
only in an interval between two points symmetric with respect to the

center of the minizone.

With these considerations

— 1 0 JE <€ — |t
Va/mimg, ; . _ : :
DOS;(E) = — 55— { jacos (ﬁ;f ) & — || <E <+ [H] (2.18)
z JE > e+ |tal

Now, we use, as a first approximation in the scheme of optical phonon
confinement (sec.1.5), the values of M calculated for bulk materials [43].
These matrix elements are directly derived by inserting into the Fermi golden
rule the interaction Hamiltonian (eq.1.38 and eq.1.39). For deformation-
potential optical phonons we get

o _BDE? [ Ny |

[ Map(Q)” = 5 ———

20V Wep [ N,y +1 J (2.19)
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while for polar optical phonons

| Map(q)” = 2me By 5 ¥ RS (i—i> [ Nor 1 . (2.20)
Voo (@—ap)’\ex e/ | Ny+1 |

This last matrix element depends on the transferred wave vector q, and
we should not have taken it out of the integration in eq.(2.12). However, we
can use the internal rejection tecnique [44] and use the value of q where M is
maximum. The value M of the matrix element obtained in this way, is used in
the above calculation. In a second moment, once chosen the final scattering
state, it is possible to calculate the real scattering probability with M (k, k')
and to decide if the scattering event is to be considered a real scattering, or
a fictitious self-scattering due to the modified probability obtained with M.
In case of a self-scattering, the final state will be equal to the initial one (for
details about the Monte Carlo method see app.A).

Using this model for the electron-phonon interaction, the scattering prob-
ability for the phonon modes used in the simulation are shown in Fig.2.1
Fig.2.2 Fig.2.3. The step-like shape derives directly from the integration of
the delta function and rensembles the density of states of the superlattice.
The polar optical phonon scattering probability has been represented using

the maximized matrix element M.

2.2.1 Using the scattering probability

In order to understand how the interaction with phonons is treated in the
Monte Carlo simulator, some considerations have to be pointed out. First
of all we know that block states (i.e. the envelope function in our case) are
extended all over the superlattice. Also the phonon wave function are, in
general, extended all over the system, and the matrix element M (k, k') is
calculated by integrating over the whole space, like in a bulk lattice. On

the other hand, superlattice phonon modes, as said before, are confined [38],
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Figure 2.1: Optical phonon scattering rate for silicon layer. The step shape of

the probability arises from the DOS of the superlattice.
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Figure 2.2: Polar optical phonon scattering rate for silicon dioxide. This is the

maximized probability obtained before using the rejection tecnique.
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Figure 2.3: Deformation potential optical phonon scattering rate in silicon diox-

ide.
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that is the phonon wave function is composed of two parts: if we consider, for
example, silicon phonon mode, the wave function is oscillating in the silicon
slab and it is evanescent in the oxide slab. Moreover, when using a Monte
Carlo approach for the study of transport, the simulated electron is localized
in space. This means that when we consider the electron phonon interaction
in the numerical code, we can use the matrix element calculated for the bulk
interaction, but we give the electron the possibility to interact only with
the phonon modes of the material it is localized in. This approximation is
reasonable also considering the fact that the optical phonon group velocity

is zero.

2.3 Results

The theory described above has been applied to the superlattice under inves-
tigation. A monte Carlo code has been written in order to perform transport
calculation (as described in appendix A), where we have collected, in particu-
lar, drift velocity, mean energy, energy and momentum distribution function.
Moreover, in the calculation, the position of the simulative electron is taken
into account in order to include the right scattering mechanisms as explained

above.

2.3.1 Distribution functions

The first results presented in this chapter are the distribution functions for
energy and momentum. The distribution functions are important in order
to understand the drift velocity and mean energy behavior. The distribution
of electrons in lowest miniband as function of the vertical component of
the momentum £, is reported in Fig.2.4, at three different values of electric
field. We can see that at low fields, the distribution is almost symmetric,

at intermediate fields the maximum shifts toward band regions where the
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group velocity is higher, at higher fields the distribution is nearly flat, thus
negative k, points reduce the drift velocity. Moreover the variation between
the minimum and the maximum value of the distribution is very low at all
fields. This variation is the cause of the small net positive drift velocity along
the z direction, and, at higher electric fields, the nearly flat distribution gives

a very low contribution to the drift velocity.

5.1e-10 . ‘ T T
| [— Ez=300 KV/m
. - - Ez=2000 KV/m
8
£5.06e-10
7
3 ,
55_04e-10
5
g
=]
£5.02e-10

5e-10! : ‘ : ‘ : :
kz (a.u.)

Figure 2.4: Momentum distribution function for the k, direction, for the lowest

miniband.
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Figure 2.5: Energy distribution function for the first miniband, at two different

electric fields.
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Figure 2.6: Population of the minibands.

The energy distribution function is shown in Fig.2.5. It can be seen
that at low electric field electrons are termally distributed with a mean en-
ergy £ = 26.1 meV, as predicted from the calculations (see app.B.2). At
high electric fields, the distribution function does not show any heating of
the carriers and assumes an undulated shape due to the interplay between
phonon energies and energy distance between wells: the scattering depletes
the distribution function near the 90 meV region (corresponding to the en-
ergy of the polar optical phonon), the the other undulations are replicas of
the first one. The narrow miniband shape prevents a rpaid thermalization.
Probably, the introduction of a low energy scattering mechanism, such as

acoustic phonon scattering, would avoid this high field effect.

At last, the miniband occupation, is represented in Fig.2.6, for different
applied fields. The electric field does not influence the population in the

three minibands as effect of the absent heating of the distribution.
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2.3.2 Negative differential conductivity

T T T T
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T T T T
M|

| | | |
ol 100 1000 10000 100000

Electric field (kV/m)

Figure 2.7: Drift velocity.

The drift velocity (Fig.2.7) is in general very low, of the order of 10
m/s, as anticipated, since the miniband is very narrow and the momentum
distribution function is nearly omogeneous in the minizone. The maximum
velocity is obtaind at electric field of about 2000 kV/m. At higher fields
the negative differential conductivity (NDC) behavior, as predicted by the
Esaki-Tsu model [42] is observed. The the NDC is explained in terms of the
momentum distribution function (Fig.2.4): in general the drift velocity in

each miniband can be written as

valz) = /B by (k) (k) (2.21)

and it is easy to understand that at low fields the drift velocity increases
with the electric field, since the predominant behavior of the distribution is
the right-shift of the maximum, but at higher fields the distribution slowly

flattens to a constant value and the drift velocity decreases.
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Figure 2.8: Drift velocity in each miniband: the contribution of the miniband
to the total drift velocity can be obtained by multiplying this curves with the

corresponding occupation fraction.

It can be seen that, although the miniband occupation is constant at dif-
ferent electric fields, the overall drift velocity curve is divided into two regions
in which different minibands dominate the transport properties (Fig.2.8). In
particular in the first region (F' < 1000 kV/m) behavior is dominated by
the first miniband, while the second miniband velocity dominte the comple-
mentary region. This is because the second miniband, which is less flat than
the first one, is charachterized by higher drift velocity and the maximum is
located at higher fields, but, since it is less populated, its contribution is

comparable only at fields higher than 1000 kV /m.

2.3.3 Mean energy

As regards the mean energy, it can be seen that a decrease in mean energy,

of about 1 meV occurs at high electric field. Looking at the distribution
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function of Fig.2.5, for E, = 2000 kV/m the electron kinetic energy is 26.1
meV, while the second distribution corresponds to an energy value of 25.3
meV. This behavior is caused by the particular shape of the distribution
function: since the phonon slightly depletes a particular energy region, the
effect is a little reduction of the mean electron energy. This effect should be
probably removed with the introduction of a mechanism able to exchange
small amount of energy with the electrons. It has been shown [45] that in
a different superlattice, with wider minibands, the mean energy increases
of the order of the miniband width, owing to the shift of the momentum
distribution function toward high enery regions. The oscillating shape of the
distribution function doesn’t appear in this case because the distribution is
smeared by the small amount of energy needed is given by the electric field

along the miniband.



Chapter 3

Oblique transport in Si/SiO-

superlattices

3.1 Effects of a parallel (inplane) electric field

When the electric field is applied along the vertical direction z of a super-
lattice, the carrier drift velocity shows the negative differential conductivity
behavior, and the absolute value of the drift velocity is very low, as seen in
the previous chapter, owing to the very flat shape of the miniband.

A parallel field component has been added to the vertical field, in order
to investigate the influence of a parallel electric field, on vertical transport.
The field component along the plane is varied from 0 to 1200 kV/m, while
the vertical component is constant at 2000 kV /m, which is the value of the

maximum drift velocity in the vertical simulation (see previous chapter).

3.2 Results

Since the electron mass is anisotropic, the electron mobility is much higher

along the in plane direction, about three or four orders of magnitude higher
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Figure 3.1: Mean kinetic energy as functions of the parallel field with constant

field along z direction, for a 24/7.68 A Si/SiO, SL.

then along the vertical direction: the resulting drift velocity is not parallel to
the electric field. A typical result with £, = 3000 KV/m and E, = 200 KV/m
is a drift velocity of vy, = 6.5 m/s and v4, = 60000 m/s. In the following
subsections vertical drift velocity v,, mean energy and their dependences

upon parallel electric field are investigated.

3.2.1 Mean energy

First of all, we analyse the mean energy (Fig.3.1). It can be seen that a strong
heating of the electrons occurs when a parallel field is added to the vertical
component. Mean energy increases almost linearly and reaches a value, in our
electric field range, of 57 meV, that is more than double than the termal en-
ergy. This heating can be observed looking at the energy distribution function
(Fig.3.2). The distribution deviates from the perfect esponential shape and
regions with different slopes appear in the exponential plot. This behavior is
strongly dependent on the phonon scattering rate: at low energy, electrons
have little possibility to dissipate and they heat up to temperature higher

than equilibrium. When the energy is high enough to allow phonon emis-
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sion, the termalization is more efficient and the distribution slope changes.
Each kink in the distribution corresponds to a phonon emission step, as can

be deduced from the comparison between the distribution function and the
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Figure 3.2: Energy distribution function, in the first miniband and the second

miniband, for several values of parallel electric field E,.
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Figure 3.3: Mean energy, above the bottom of each miniband, in a 24/7.7 A
Si/SiOy SL.

scattering rates of section 2.2.

Another consideration can be deduced looking at the mean electron ki-
netic energy in each miniband (Fig.3.3): the strongest energy increase con-
cerns the first miniband since in this band the scattering rate is lower.

What happens is that the parallel electric field heats the electrons along
the parabolic direction of the bands and the scattering mechanisms redis-
tribute the energy along all three directions. As seen before, the interband
scattering is a very important mechanism at this transport regime, thus it
can be deduced that the population of electrons in minibands higher than
the first one, will increase considerably owing to the electron heating. The
miniband occupation as a function of the paralle component of the electric
field has been studied and results are shown in Fig.3.4: the number of elec-
trons in the higher bands is very low if compared to the one of the first band,
but it increases when the parallel field is added, owing to the parallel heat-

ing. This population change will strongly affect also the drift velocity along
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Figure 3.4: Population fraction for a 24/7.68 A Si/SiO, SL.

the vertical direction, as described in the following section: the properties of
the higher minibands will became more and more important increasing the

parallel field.

3.2.2 Drift velocity

The principal effect of the parallel component of the electric field is a strong
increase of the drift velocity (Fig.3.5). When a lateral field of 1000 kV/m
is applied, electrons move about three times faster than with only vertical
field applied. First of all, the population change in the different minibands
is sufficient to explain this effect: since different minibands contribute with
different values to the total drift velocity (as seen in vertical field simulations,
see for example Fig.2.8), the increase of population in higher minibands will
change the weight of these contributions and, in this way, “faster” minibands
give a more important contribution to transport. A second reason exists,

however, for this strong improvement: the drift velocity is enhanced in each
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Figure 3.5: Drift velocity as function of the parallel field with constant field along
z direction, for a 24/7.68 A Si/SiOy SL.

miniband separately as can be seen from the saparated curves in Fig.3.6.
This phenomenon is confirmed by the momentum distribution functions in
the minibands (Fig.3.7). The application of the parallel electric field depletes

the negative group velocity regions and favors the positive group velocity with
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Figure 3.6: Drift velocity for each miniband in a 24/7.68 A Si/SiO, SL.
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a global enhancement of the drift velocity for electrons in the miniband. This
effect is the opposite of what seen in the previous chapter where the vertical
field flatten the momentum distribution function and for highr fields the

result is a decrease of the drift velocity.
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Wannier-Stark formulation of

transport

4.1 Motivation

The Monte-Carlo simulation used in the previous chapters, is based on the
semiclassical approximation for the electron motion. The miniband transport
description is useful when the miniband width is greater than the voltage drop
over a SL period i.e. eEd < 2¢; beyond this limit, a quantum description is
required [46]. The first miniband (that is less than 1 meV wide) satisfies this
condition for fields lower than 200 KV/m. The second miniband is about 9
meV wide and satisfies the former condition when E, < 3000 KV/m. Since
in the diagonal simulations a vertical field E, = 2000 KV/m is used, the
semiclassical model should be applicable. for rlectrons in the second mini-
band. However also at high fields the population, as seen in Fig.2.6, is almost
all in the first miniband, thus a quantum theory of transport is required; in

particular such a theory should avoid any use of classical dynamics.

The description chosen for further calculation is based on the formalism

of the Wannier-Stark function. These functions are eigenstates of the su-
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perlattice Hamiltonian, including the electric field, and, in principle, should
be able to give rise to more accurate results than in the semiclassical case,
especially at high fields. In particular, the drift velocity curve will show fea-
tures absent in the semiclassical case owing to the particular interaction of

the electronic states with phonons.

4.2 Wannier-Stark functions
The Schrodinger equation to solve now is the following
HoV — eF2V = U (4.1)

where we have used the crystal hamiltonian in the envelope-function and

parabolic-band approximations

=
I
_|_
<
=

Now, let us use, for simplicity, the Dirac notation, so we write |¥) for the

wave vector, ¥(z) = (z|¥), and the above equation is
Ho|U) — eFz|¥) = ¢|0) . (4.2)

We can now expand the solution over the superlattice bloch states |n, k),

eigenstates of the Hamiltonian ﬁo
=3 / di' (K'n [ T) | (4.3)

and substitute it to the above Schrédinger equation; multiplying by (kn| it
follows that

Z/ dk' (kn|Ho|K'n') (K'n'|¥) —eFZ/ dk'(kn|z|k'n")(k'n'| W) +
o K o K
= / dK'e(kn|k'n’) (k'n!|T)
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-y /k K (B (1) — €) B (' — k) (| )
—eFY / K (k2 [k'n’) ('’ | @)

= (Eu(k) —¢) (kn|T) —eF ) /k i (e[ ') (K'n'| D) (4.4)

Since the system is separable, it is convenient to take into account only the
one-dimensional problem along the electric field direction z. In particular,

the following calculation is performed using the real space representation:

Gk, (2) = (k.n|¥)
Vnk, = (2]k.n) = unk, (2)e

o= ) /k z Ak, (k) k. (2) - (4.5)

ik, z

The value (kn|z|k'n’) has to be calculated explicitely:

(kn|zk'n")y = /dze“klzk")zu;’;kz(z)zun,klz(z)

1d -
T idk / dze ™= 0l (2)un (2)

1 ik —E )z % d
—g/dze (k> —k:) u"kz(z)dk’ Ui, (2) (4.6)

Since the first term is the scalar product of two Bloch functions, the result is

di, u) of the

a Dirac delta; in the second term there is a periodic function (u*
position. As a result, the second integral is proportional to the momenum

Dirac delta

1d
where
2 . d
Xnn’ = T dzunkz (Z)@’U;n k. (Z)

It is convenient to consider a one-band model for the calculation, and then

we can neglect off-diagonal terms in this last term. By defining

EW(k,) = E,(k,) — eEX,, (4.8)
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we obtain the final expression for the one-dimensional Schrodinger equation

in k representation

ED() — ieF | du(k.) = (k) (49)

The solution follows from immediate integration of this equation

kz

b (k,) = cear Jo” BB (4.10)

where c is a normalization constant. The energy eigenvalues can be obtained

s

7) since

from the boundary condition: the function must satisfy ¢(—7) = ¢(
the two Brillouin zone boundaries are the same £ point. From that condition

follows that

1 s
— [ aK, [B - EO(K)] = 2vr (4.11)
€F _%
L I
B’ =veFL+ / dk! ESV(E) (4.12)
m™J)_=
L

This means that an infinite set of equally spaced energy levels arise from
the band of the unbiased superlattice. These levels are spaced of a value
eFL and are designated as Wannier levels, or Wannier-Stark (WS) ladder.
The Wannier-Stark function are mostly localized in a single well, and the
localization increases with the electric field. The WS state is in close rela-
tionship with the Bloch oscillation described in section 2.1, in fact the spatial
extension of the oscillation is comparable to the localization of the WS state.
Moreover, the energy separation between the WS states is AF = hw, with w
the frequency of the bloch oscillation.

The exixtence of the Wannier-Stark ladder has been quite controversial,
until their the experimental observation, reported in 1988 [47].

Along the two other lattice directions, the Hamiltonian describes a free
particle motion, then the wave eigenfunctions will be plane waves with parabolic

energy dispersion. The total wave function, in real three-dimensional space,
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results to be

vy (r) = ceikxzeikyy/L ks, (2)eeF J§* QK (BB (kL) : (4.13)

%
and the energy eigenvalues are
hQ

n* 2
— 4.14

EY (kg ky) = ueFL+—/ dk' EW (k) +

The Wannier-Stark functions, calculated for the system under investigation,
are represented in Fig.4.1. The WS eigenstates used in the following de-
rives from Block states and minibands calculated using the Kronig-Penney

potential for the z direction of the superlattice.

4.2.1 Properties of the WS functions

Now we will analyse in more detail some properties of the Wannier-Stark

functions:

e The functions are more localized when the electric field is high (as can
be seen in Fig4.1). This is compatible with the Bloch oscillation picture
described before. In particular, in the limit of zero field (F* — 0) it can
be seen that the WS functions tend to Bloch states.

e U”(z) = U%z—vL), in fact we can write, using expression (4.12):

U(z)=c / ' dk by, (2)ecr Jo* dk:BotveF LBV (k)] (4.15)

T
with By = £ f_%% dk! EW(K!). Using now the equations (4.5), (4.10)

and the Bloch Theorem we can write

V(z) = / dk. (k)™ 4y, (2)

_ /_ dk,¢o(k.)x, (z — vL)

= U(z-vl) (4.16)
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e From the figure we can see that the first level WS function is much more
localized than the second level one since the former is chacterized by a
lower energy. Moreover, the first level function presents one oscillation

per well, while the seconfunction shows two oscillations.

4.3 Transition probabilities

In order to study the interaction of the carriers with the crystal, we consider,
in the following, the system composed by the electron and the phonon gas.
The transition probabilities used in the Wannier-Stark transport model, have
been calculated starting from the Fermi Golden rule. We now indicate the
eigenstates of the system as |[vnk, nq) where v is the number of the well, n is
the band index, k is the two-dimensional wave vector in the parallel direction
and ng is the phonon occupation. Now the Fermi rule can be written as
P(vnkng, v'n'k'ng) = Z‘ n'k',n He on(Q)|vnk, ng) : X
J [e(nk) — €(n'K’) F hw,y + veFd] (4.17)

where f]e_ph(q) is the electron-phonon interaction Hamiltonian of eq.(1.37).
As a first step to the calculation of the matrix element of the interaction
hamiltonian, we write the wave function as the product of lattice and elec-

tronic wave functions
vnk, ng) = |nq)|vnk) = |ng)|vn)lk) , (4.18)
so that the calculation is developed as follows
(y'n'k'|(ng|c(q) (aqeiqr + aLe‘iqr) Ing)|vnk) =
(@) (0K [(ng|aqe’ [ng)[vnk) + c(a) (V'n'k'[(ng|ale " |ng)|vnk)

)
(a)v/nq{(v'n'K'[e" [vnk) g ng_,
+c(q)y/ng + LUK |e " |unk)dn, ngt1 s (4.19)

C
C
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and the exponential term can be calculated explicitely
(V'K e unk) = (@'n'|eTCE |lun) (K |eF U k)

= (5k7k,¢q”(V'n'|e¢iqzz|yn> : (4.20)
Finally, the transition probability for the electrons, according to the first
order perturbation theory is

Nq

ng +1
Ok—15q, 0 [€(nk) — e(n'K') F hw,p, + veFd]  (4.21)

2 .
P(vnk,/'n'k') = % ZCQ(q) |(y'n'|e¢zqzz\un>‘2 X

where ng is the mean value of the phonon occupation. We are interested
in the total scattering probability from a state (vnk) to any possible final
state k. We integrate over the momentum variable, but we not perform
the sum over v'n/, since it is useful to keep separate these probabilities in
order to easily determine the final state after scattering. The momentum
conservation delta function is then used to eliminate the integration over qy,
which becomes now q; = k' — k. Moreover, the tranformation into elliptical

coordinates is useful
ky = /el cost

ky = /ot £l'sin 6
and the integral is now

1
Py (vnk) — rar / do / dg, e Ta

(4.22)

(27r)5h mo ng+1
‘(l/'n"ﬁiq“\yn) |2 § [e(nk) — e(n'K") F Fiw,, + veFd]

- dé / a9 / g, Moy
(27T 5h3 ng +1

|(v'n'|e¥"%* |un) ‘2 b [e(nk) — € F hw,y + veFd] (4.23)

where the substitution ¢ = e(n'k’) = 22” has been used. Moreover, for

optical phonons, nq is constant for a given temperature and should be put
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out of the integration. The energy conservation delta function is now used to

eliminate the integration over €', and the final scattering probability is now

A/ MM n N 1q. 2 2
P,,/n:(l/nk) = (27_‘_7)577/;/ "t 1 /de/ dCIzC2(q) |<V n |e¥ ¢ ‘Vn>‘

(4.24)
The integrations of the delta functions has introduced the following condi-

tions over the transferred wave vector

= (ki — ks, Ky, — ky, q2) (4.25)

Y

where the wave vector k' is calculated through the transformation (4.22),

and !’ is obtained as follows

!

! __ V/2mge
I'= h

€ =e+veFd+ hw

4.4 Optical phonons

As regards optical phonons in particular, we use the specific factor c(q)
introduced in eq.(1.38) and (1.39). In the case of deformation potential, this
factor is independent of q (so we will use ¢(q) = ¢), and one more intagration
can be performed over the # variable. The deformation potential scattering

probability thus results

mzmy » 2
P, (vnk) = an - /dqz n'[e¥"* |yn)|” . (4.26)
For polar interaction, eq.(4.24) must be used. The integrations lef in eq.(4.24)
and (4.26) are performed numerically in the simulator.

We present, for example, the transition probabilities for silicon optical

phonon and for silicon dioxide polar phonon interactions (Fig.4.2 and 4.3)
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Figure 4.2: Deformation potential silicon phonon transition probability versus
energy for an electron from band 1 to band 1 in any well of the superlattice for

three different applied electric fields.
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Figure 4.3: Polar optical phonon transition probability versus energy for an
electron from band 1 to band 1 in any well of the superlattice for three different

applied electric fields.
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are shown. In particular these probabilities are calculated for the transition
from level 1 in well v = 0 to level 1 in any well (v = 0 included). In general
the transition from well 0 to well 0 is dominant, but when increasing the
electric field, little contributions from transition to adjacent wells can be
seen in the scattering probability: they give rise to the steps at energies
hw + veFd (with v = 1) in the emission rates. Moreover, the polar optical

transition probability shows the typical decreasing behaviour.

4.5 Monte Carlo simulation of WS transport

Like in the semiclassical case, a Monte Carlo simulation has been performed
in order to study transport properties in the framework of the WS functions
formalism. Since the electric field has been included in the hamiltonian of the
system, and the WS states are eigenstates of this hamiltonian, no acceleration
is present between two scattering events. This means that the scattering
probability I'(E) is independent of time, since during the time between two
scattering the electron does not change its energy. Under this condition, the
self-scattering technique, used for the semiclassical simulation of miniband
transport, is not necessary and there is no need to maximize the scattering
probability. The scattering probability is then used to determine the time
between two scattering events: during this time, the electron remains in the
same eigenstate (n,k) without any evolution.

The scattering probability has been calculated as P, (vnk), where the
dependence on v/ and n' is explicitely taken into account in order to simply
find the final state after the scattering: once chosen the scattering mechanism
as described in App.A, the final state (n, k) is automatically identified. The
final vave vector k' is calculated by application of the direct technique to
the scattering probability of equations (4.24) and (4.26). Once generated the

state after scattering, a new cycle begins.
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Since the electric field is applied along the vertical direction, the drift
velocity component along the inplane direction is zero and the component

along the vertical direction z can be calculated as

_ ZZ”Td , (4.27)

where 7; is the time between two scattering events generated according to

V4

eq.(A.4) and d is the superlattice period. Energy and momentum distribution

functions along the planes are also collected during the simulation.

4.6 Results

Using the theory and the simulation technique described until now, we have
obtained a drift velocity curve (Fig.4.4) similar to that obtained with the
miniband transport simulation (Fig.2.7). Nevertheless, the two curves differs

in the values of the drift velocity, and in the general position of the curve

100

drift velocity (m/s)

L Ll L
10 100 1000 10000 1e+05

E (kV/m)

Ll Ll
1

Figure 4.4: Drift velocity obtained with the WS transport formalism for the

studied superlattice.
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Figure 4.5: Contributions of the transitionsn =1 — 1 and n = 2 — 2 (indicated

as first and second miniband in the text) to the overall drift velocity.

with respect to the electric fields value: the present result is a drift velocity
twice as high as the semiclassical one, and all the curve is shifted toward
lower fields. The reason of this difference is currently under investigation.

Some new features appear, due to the particular approach of the WS
functions. First of all, we can see that two main peaks appear in the low
field region of the plot. These two peaks are caused by the contribution
to the total drift velocity from WS states derived from Bloch states in the
first and the second miniband, as can be deduced from Fig.4.5: different
minibands give rise to different contribution to the drift velocity, at different
field ranges.

Moreover, using the formalism of the WS functions, new features in the
dift velocity curve are present. First of all, when the energy difference be-
tween two wells is equal to the phonon energy, a kink in the drift velocity
is present, since resonant scattering occurs. These kinks are evindent in the

drift velocity curve calculated for each single miniband Fig.4.5 (in this way
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Figure 4.6: Picture representing the resonance phenomena due to the alignement
of the WS levels and the phonon energy. The transitions are represented by the
arrow. The same process v = 0 — /', depicted for transitions 0 — 1 is possible for

any V. The resonance with the optical phonon energy is evident

interactions with other bands are switched off) in the 10* kV/m region. A
similar process happens when the energy difference between the first level of
a well and the second level of another well is equal or less than a phonon
energy: this explains the rapid increase of the drift velocity curve for high
electric fields in Fig.4.4. A representation of these two mechanisms is pro-

vided in Fig.4.6.

When looking at the energy distribution function (Fig.4.7), a problem is
revealed: the sharp step at the initial energy plus the silicon optical phonon
energy, indicates that the physical model is probably not sufficiently accurate.
A more detailed “step by step” investigation of the electron history has shown
that this step is caused by the introduction of scattering mechanisms able
to exchange only fixed and high amount of energy . The weak interaction
with other wells and levels is not sufficient to distribute electron energy in
the right way and this strong peak does not disapper even increasing the

statistics in the Monte Carlo simulation.

An indication for this interpretation is that the introducation of a ficti-
tious scattering mechanism with energy of 4 meV, is able to thermalize the
energy distribution function as shown in Fig.4.8. This means that for an ac-

curate study of the transport properties, a low energy scattering mechanism,
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Figure 4.7: Energy distribution function for electrons in the first subband. A
sharp step at the energy of the silicon optical phonon (62 meV) is present.
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Figure 4.8: Energy distribution function for electrons in the first subband where

a fictitious optical scattering mechanism with 4 meV energy has been introduced.

such as acoustic phonon scattering, should be useful.



Chapter 5

Proposal for an
electroluminescent

superlattice-based device

The idea presented in this chapter concerns a proposal for obtaining elec-
troluminescence from a superlattice silicon-based device. The superlattice
structure is suitable for its direct gap that should favor recombination, but
in general electron density and drift velocity are very low, as seen in the
simulation of previous chapter. It is possible to imagine a large oxide barrier
after several superlattice periods as in Fig.5.1. In this way, the barrier accu-
mulates electrons, and, when a hole is injected in the opposite direction, a

recombination is highly probable.

A simulation has been performed using the Monte Carlo simulation de-
scribed in Chapter 2.1. An ensemble of electrons, starting at position z = 0,
has been evolved for a fixed time, collecting, before each scattering, the posi-
tion on a grid on the z direction. The device is composed of 20 periods of the
Si/Si0O, superlattice used in the previous simulation, and a thick potential

barrier. Since this barrier is very thick and high (it is made of a very wide
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Figure 5.1: Sketch of the proposed structure and of the recombination mecha-

nism.

SiOy layer), it is possible to model the barrier as an infinite potential. in
particular, we have used a model of an elestic barrier.

In Fig.5.2 the electron density has been shown as a function of the z co-
ordinate. It can be seen that near the barrier, the electron density increases
of about one order of magnitude. Since the recombination rate roughly de-
pends on the product of electron and hole density [48], it can be deduced

that radiative recombination is highly favoured.
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Figure 5.2: Spatial distribution (black line - arbitrary units) of the electron along
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reported for comparison.
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Part 11

Transport in quantum wires






Chapter 6

Coherent transport in quantum
wires assisted by Surface

Acoustic Waves

6.1 Introduction

Since the discovery that quantum data propcesing can be implemented, al-
most a decade ago, efforts have been devoted for identifying physical systems
able to relize a qubit and the basic transformations needed for quantum com-
putation. The number of systems proposed is still limited and it is difficult
to find a system that allows one to set up and connect an arbitrary number
of qubits. Recently, the group where this work has been developed has pro-
posed a solid state implementation of quantum logic gate devices [49]. The
system proposed is based on coherent propagation of electrons in coupled
semiconductors quantum wires, where the state of the qubit is represented
by the state of the electron and can be controlled by proper design of the

system.

This system not only stisfies the properties needed for the realization of
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quantum gates, but it is also able to satisfy the “Di Vincenzo” [50] check
list for a thinkable quantum computer since (a) it is compact, reliable and
reproducible; (b) the output of a quantum gate can be used as input for the

next gate; (c) it is integrable with conventional electronics.

The classical information theory is based on the binary encoding of the
information: any integer N is represented by an ordered sequence of n bits

a;, according to
n—1
N=> a2 (6.1)
i=0

where a; € 0,1. Any bit can assume only one of the two possible values: 0
or 1. If a bit of information is encoded using a state of a system described
by quantum mechanics, the bit can be in any superposition of 0 and 1. In
fact, the states 0 and 1 are associated with two specific eigenstates (|¢g) and
|11 ) respectively) of a suitable observable, and now the system can be in any

state

|1} = coltbo) + c1|th) (6.2)

with ¢y and ¢; are complex numbers that satisfy |co|?+|c1|? = 1. This means
that the quantum analog of a bit, the qubit [51], can be simultaneously in
both states: if we measure the qubit we can obtain the value 0 and 1 with
probability |cy|? and |c;|? respectively. The two basis states of the qubit are
indicated as |0) and |1).

When information is encoded in an array of qubits and processed with a
“quantum machine” able to preserve superposition of quantum states, it is
possible to create an input state that is a linear superposition of m classical
inputs, then the output of the elaboration will be the same superposition of
the corresponding m classical results. In this case the quantum computing

presents a kind of “natural” parallelism.
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Figure 6.1: Transverse potential of the two quantum wires. The symmetric and
antisymmetric wave function are drawn together with their sum and difference

that are the states |0) and |1) respectively. (From [49])

6.2 Physical system and principles

The basic device considered here consists of two parallel intrinsic
GaAs/Al,Ga;_,As quantum wires, operating at very low temperature in
order to have a negligible electron density in conduction band and to min-
imize electrons-phonon interactions, responsible of the decoherence process.
The transverse potential of the system can be seen as a double square-well
potential (Fig.6.1). We suppose that the potential barrier separating the two
wires is sufficiently high to make their tunneling probability negligible. In
the middle of the device, a coupling window is opened in the barrier, thus
allowing electron transfer between the two wires (Fig.6.2).

Let us consider an electron injected into one of the two wires, in a region
of the device, where the potential barrier is high. The defined potential

is separable along the longitudinal and transverse direction of the system.
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Figure 6.2: Overall potential of the two-wires structure.

Here we suppose that the transverse barrier is able to keep the electron in
the transversal ground state of one wire, while, in the longitudinal direction,
the state of the electron is assumed to be a minimum uncertainty wave packet
with a wave-vector centered around ky. The initial state of the system can

then be written as

2 T — Xg 1 _(v=w0)? _.
Y(z,y) =4/ 7 cos [’/T } e~ (43%) g ihov (6.3)
L L \Vov2m
where ¢ is chosen to be the center of the left well (z; will denote the center

of the right well).
Let us define the state of the qubit as |0) if the electron is injected in the

left wire, and |1) if it is in the right wire. Let us now introduce the coupling
window between the two wires. In this region the two wires are strongly
interacting. The transversal wave function, localized in one of the two wires,
can be written with a good approximation as superpositions of the even 1,

and the odd v, eigenstates of the coupled system:

1
0) = E(\%) + [0)) (6.4)
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1

V2

The evolution of these two states is given by the evolution of the two eigen-

states 1, and 1,

1) (Itbe) = o)) - (6.5)

€
V2
= pmiwtyid (cosg 0) +z'sing \1>)
€
V2
= e Wiy (7, sing |0) +cosg \U) g (6.6)

0 = —=(lde)e™ ™ + [gho)e ")

([e)e™™" = |yho)e™™")

where 6 = (w, — we)t. This means that, in the coupling region, the electron
wave function oscillates between the two wires with a frequency w, — we
(this kind of oscillation has been experimentally observed [52]). Then, by
an accurate tuning of the physical parameters (the window length, the wires
and the potential barrier widths) the number of oscillations can be controlled,
thus allowing to determine the fraction of electron wave function transmitted

in each of the two channels.

6.3 Basic logic gates with quantum wires

In order to perform any quantum bit transformation, as in the classical in-
formation theory, a minimum set of quantum gates is necessary: these are
called “universal set of gates”.

Among all possible quantum gates, we are interested in two particular
single-qubit operations: the “quantum NOT” and the “beam splitter”. Both
of them are based on the basic device whose geometry has been described in
the previous section: they only differ for the length of the coupling window.

The quantum not gate is able to perform the shift of the electron injected in
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one wire to the other wire
|0) = [1), [1) = |0) (6.7)

while the beam splitter is able to separate the wave function into two parts

running in the two wires, for example
|0) = «|0) + B|1) . (6.8)

The functionality of the proposed system to perform the above oper-
ations has been verified through numerical simulations. Simulations are
performed using a finite difference method for solving the two-dimensional
time-dependent Schrodinger equation of the system. The parameters of the
simulation are reported in App.C.1.

The simulation of the quantum NOT gate shows (Fig.6.3) that when the
electron, once injected in the left wire, reaches the coupling window, the
oscillation starts between the two wires and, since the length of the window
is calibrated to obtain half an oscillation, the final state of the electron is
comletely localized in the right wire. When the coupling window length is
reduced in order to let the wave function oscillate for a quarter of a period,

the quantum beam splitter is obtained (Fig.6.4).

6.4 Introduction of the SAW potential

In order to avoid computational errors in a wide network of this kind of
quantum devices, a redundance of information can be obtained by injecting
a large number of electrons in sequence [53], with the condition that one
electron cannot interact with the previous or the following one. Moreover,
as can be seen in Fig.6.3 and Fig.6.4, the wave packet is subject to quantum
mechanical broadening during its propagation. This broadening may gener-

ate problems to succesive quantum eleborations. A possible solution to both
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Figure 6.3: Square module of the electron wave function evolving in the quantum
NOT device a three different times. The length of the window is 16 nm and it is
calibrated to obtain half an oscillation (see eq.6.6). (From [49])
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Figure 6.4: Square module of the electron wave function evolving in the beam
splitter device a three different times. The length of the window is now set to 8

nm to obtain a quarter of an oscillation. (From [49))
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problems is to use surface acoustic waves (SAW) for injecting and driving
electrons in the device.

Surface acoustic waves have been used in the last years as a tool to realize,
in a very controlled way, single electron transport and counting in solid state
nano-devices [54, 55, 56]. In the following we have proved that SAW can
be used for this task, performing the simulation of the coherent evolution
of electrons in two coupled quantum wires assisted by the SAW. For the
proposed devices, such a method presents two main advantages with respect
to the free propagation of a single electron along the quantum wire (where
injection is provided, for example, by a single electron pump [57]): (1) two
or more electrons can be injected simultaneously in different wires: in fact
in the lead region electrons are collected in the minima of the SAW forming
a line perpendicular to the wires, and reach simultaneously the entrance to
the wires; (2) since the electron wave function is embedded in a “moving
quantum dot” formed by the minimum of the SAW and the wire barriers,
its spread does not increase during the propagation. This condition should
allow the creation of longer quantum gate networks with respect to the case
of purely ballistic propagation[53].

To study the effect of the SAW-driven propagation on the functionality of
the quantum-gates, we have used the same 2D time-dependent Schrodinger
solver used for the results reported in the previous sections, where the ability
to account for a potential explicitly dependent on time has been added. A
number of simulations have been performed, where the moving sinusoidal
potential of the SAW is added to the potential profile representing the two
coupled quantum wires.

The initial wave function, fully localized in a wire, has been chosen as:

U(z,y,t = 0) = ¢(z)x(y)e 7 (6.9)

where ¢(z) is the ground eigenstate of the wire potential in the x direction
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(calculated as in eq.(6.3)), x(y) is the ground eigenstate of a minimum of
the potential representing the SAW (at a fixed time) in the y direction, m*
is the GaAs effective mass of the electron and v, is the sound velocity in the
material equal to the initial velocity of the carrier. The exponential factor is
introduced in the initial condition in order to provide to the electron a drift

velocity equal to that of the sound wave.

6.5 Results

In this section, the results of the simulations are presented. In particular,
the same operations (quantum NOT and beam splitter) described above are
simulated with the introduction of the SAW potential. The SAW is much
slower than the wave packet of previous simulations and the device crossing
time for the electron will be much higher. For this reason, the geometry of the
device has been modified: in particular wider barrier and wires and shorter
coupling window have been used. The SAW parameters are calibrated on the
transverse acoustic phonon mode of GaAs. For all simulation parameters,
see App.C.2.

Fig.6.5 shows the evolution of the square module of the wave function
at three different time steps: (a) before reaching the coupling window, (b)
passing through the coupling window, and (c) after the window, for the
quantum NOT gate. From the calculation it turns out that 99.2% of the
initial wave function is transferred in the second wire. The beam splitter
operation is presented in Fig.6.6. In this case the fraction of transferred
wave function results to be 51.3%.

Results show that the SAW potential is very useful in order to prevent
the spreading of the electron wave function, that is evident without the SAW
potential (Fig.6.3 and Fig.6.4), and reducing undesired reflection effects due

to the interaction with the coupling window. The former property uis very
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Figure 6.5: Evolution of the square module of the wave function at three different
time steps: (a) before reaching the coupling window (t = 0), (b) passing through
the coupling window (t = 19.8 ps), and (c) after the window (t = 40ps), for the
quantum NOT gate. The coupling window is 7 nm long. Note that in the picture
are also represented, on arbitrary scales, the shape of the two-wires potential and

of the SAW potential.
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Figure 6.6: Same as in Fig.6.5, for the case of a beam splitter. The length of the

coupling window is now 5 nm.
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useful for a possible realization of a quantum bit network, since the electron
wave function remains narrow and well localized in the device. Moreover, the
SAW confining potential is very efficient for the confining of the electron as
can be seen from the plot of the Fourier transform of the wave packet along
the longitudinal direction (Fig.6.7). The electron initial velocity of eq.(6.9)
has been setup different from the SAW velocity and it can be seen that the
fourier transformed wave packet oscillates around the value representing the
velocity of the SAW. In real space this phenomenon is associated with a real
oscillation of the wave packet around the minimum of the SAW potential,
without escaping. The oscillation observed in the width of the transformed
wave packet is caused by the interaction of the packet with the potential
barrier of the SAW. If no SAW potential were present, the fourier components
would not change in time but the wave packet would be subject to quantum

mechanical spreading.

6.6 Future developments

The introduction of the SAW in modeling the dynamics of electrons in sys-
tems of coupled quantum wires has proven to be very promising. The next
steps will be applying such method to the study of more complex logic net-
works (see for example the two-qubits gates described in Ref.[49]), and to
systems modelled with a more realistic potential profile of the quantum wires
obtained by means of a Schrodinger-Poisson solver. Moreover, we are now
trying to simulate the same device, with lower SAW potential, in order to

reproduce experimental conditions.
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Figure 6.7: Fourier transformed packet along the longitudinal direction for a

packet velocity (a)half (b)equal and (c)double with respect to the SAW velocity.

The oscillation are caused by the SAW confining potential.
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Appendix A

Monte Carlo method for

transport

In this appendix we describe the fundamentals of the semiclassical Monte
Carlo method for transport simulations. As regards the Monte Carlo sim-
ulation used with the Wannier-Stark functions, detailes are reported in the

corresponding chapter.

A.1 The Boltzmann equation

In order to study carrier transport, the motion of the carriers has to be
taken into examination, when electric or magnetic fields are applied. In the
following we describe the theory based on the semiclassical approximation.
According to this approximation, carrier wave packets are supposed to be
localized in space to have neglectable dimension with respect to the external
potential variation ranges and mean free paths; at the same time the Fourier
transformed packet is supposed to be small compared to the Brillouin zone.
In this way the electron can be identified with the coordinates (r,kq) of the

centres of the wave packets in real and reciprocal space respectively, as a
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classical particle. The semiclassical dynamics states that the centre of the

wave packet follows a semiclassical trajectory

dkg 1

where v, is the carrier group velocity. This equation means that a carrier
subject to external fields behaves like a classical particle with momentum
hk, subject to the same field. The difference between this equation and the
classical equivalent, is that kg is the pseudomomentum of the electron and
the particle energy is described by the band.

In this semiclassical picture, the fundamental role is played by the distri-
bution function f(r,k,t), proportional to the carrier density in phase space.
When this function is normalized to 1, it represents the density of probability
to find an electron in a state (r, k). The evolution of the distribution function

is governed by the Boltzmann equation

of F _(of
vy v = () (2.2)

where F is the total force acting on the electron, and the right term (collision
term) is the variation of the distribution function caused by the scattering
mechanisms. Once known the distribution function, every physical quantities
of interest can be deduced from it.

In a homogeneous situation the collision term can be expressed as the
difference between the number of carriers entering and exiting a volume dk

owing to scattering mechanisms, per unit time

of Vv . / / / |
<5) ~ @y [ 1700 P 101 = 1K)~ £00 P11 = FK)
(A.3)

where P(k, k') is the transition probability and the distribution functions are

present with their complementary term to unit, in order to account for the
Pauli exlusion principle. In general the transition probability P is included
using the fermi golden rule, i.e. the first-order time-dependent perturbation

theory, where the interaction hamiltonian is the perturbation.
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Figure A.1: General scheme of a single-particle Monte Carlo algorithm for trans-

port.

A.2 The general technique

The Monte Carlo method is based on the generation of random numbers ac-
cording to well defined probabilities, and can be applied to a great variety of
problems. In the case of carrier transport, the evolution of a particle, inter-
acting with various potentials, can be fully simulated in the phase space. If we
want to simulate a stationary simulation, it is sufficient the time-evolution of
only one particle: in practice we are using the ergodicity hypothesys, suppos-
ing that the time average of a single particle is equal to the enseble average.
point.

The general sequence of a Monte Carlo algorithm consists of different
steps (Fig.A.1). After the definition of the physical system (material, scat-
tering mechanisms, external fields, simulation parameters) and of the initial
state of the motion, the motion starts. First of all, the scattering probabilities

are used to define a mean scattering time 7. If the scattering probability
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is independent of k, then 75 = PLO, otherwise we can define a maximized
probability P, = max P(k), having introduced, in such a way, a fictitious
mechanism, called self-scattering, whose final state is equal to the initial one.
Now, P[k(t)]dt = %e% is the probability for an electron to suffer a scatter-
ing at the interval d¢ around time ¢. The simulation may then proceed by

generating the free flight time as follows [44]
t, = —7o In(r) (A.4)

with r a random number between 0 and 1. During this time physical laws,
such as acceleration produced by the electric field, are applied to the electron,
and all the physical quantities, we are interested in, are collected at the end
of this flight. Generally, the physical quantities of interest are mean energy,
derift velocity, energy and momentum distributions, covered space.

Then, a scattering occurs. In order to determine which scattering is
chosen, the different probabilities P;(k) of the i-th process (including the
self scattering process) are calculated, then a random number ' is chosen

between 0 and I'(k) = ), P;(k). The n-th scattering mechanism is chosen if

n—1 n
Y P<r<> P, (A.5)
=1 =1

the probability of this choice is proportional to P;.

The final state of the particle after the transition is randomly determinded
according to the differential cross section of the particular scattering mech-
anism occured. At this moment a new cycle begins and the procedure goes

on until the desired precision for the result is reached.
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Other calculations

B.1 Effective hamiltonian for Si(111)/SiO,

B.1.1 The general case

In this section, the effective hamiltonian is found for a Si/SiO, superlattice,
with silicon crystal oriented in any direction with respect to the superlattice
planes. Let us indicate the coordinate of a vector with respect to the silicon
crystal directions as 7 = (z,y,2) = (21,22, x3), and the same vector with
respect to the superlattice (SL) system a R = (X, Y, Z) = (X1, X, X3). The
hamiltonian will be the following

Ao e ey

Com.. t 2ma, Y 2m
TT Yy 2z

- g%(%)ﬁ%+wm (B.1)

L)

since the mass tensor is diagonal in the Si-crystal system, and the Einstein
notation for repeated indexes is used. A unique coordinate system (namely
the SL system) is now to be used in the hamiltonian. The rotation between

the two systems, described by an orthogonal matrix A, is such that

Xi = Aijz; (B2)
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It is easy to demonstrate that the momenta follow the same transformation

rule, as can be seen from the transformation of the partial derivative;

o 0 Ox; g 0 )
= =AT = — A
GXZ al'j (')X, I al‘j J 8xj

from which we define now K; = A;;k;. The transformed Hamiltonian in the

(B.4)

SL system becomes now

~ 2
H = h—AgK, (i) Al K +V(Z)
2 m) .,
_ Pr(L) k,+v (B.5)
o2\ ), '

where

Gos@)e o

is the effective mass tensor expressed in the SL coordinate system. Since
the Si-lattice effective mass tensor is diagonal, it is possible to write (%)Z] =
(%)w dij, then (ﬁ)lm = Ay (%)“ AT | where the summation over j has been

eliminated by the Kronecker delta.

B.1.2 The Si(111) calculation

Let us consider now a superlattice with the planes orthogonal to the (111)
direction. We have chosen the orientation of the two coordinate systems as
shown in the figure (Fig.B.1), with Y lying on the zy plane along the 45°
direction. It can be easily shown that in this geometry the transformation

matrix is
-1 -1 2
1

A= — 3 —v/3 0 . B.7
7 V3 —V3 (B.7)
V2 V2 V2
In the case of silicon, the six ellipsoidal minima of the band structure

are equivalent with respect to the Z direction, since the system is invarant
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=~y

Figure B.1: Relative position of the Si (zyz) and SL (XY Z) coordinate systems

under any permutation of the z,y,z axes. So we can develope the theory

with restriction to a particular band minimum, i.e. the (001) minimum; in

this way it is possible to use my; = mgs = m; and mg3 = m;, the transverse

and longitudinal silicon effective masses. In this way we find the effective

mass tensor in the SL system

where a = % (i

V2(a —c). t

a 0 d
=105 0
d 0 ¢

2 _ 1 _1( 2 1 _ 1 V2 V2
+Hl)’b—wc—§(m—t+m>’d—§(—a+ﬁ>—

Using this substitution, the effective mass hamiltonian in the SL system

is finally

2

~ B
H== oK% +bK2 + cK 2%+ 2V2(a — ) Kx K, | +V(Z) .

(B.9)
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B.2 Mean kinetic energy in SL minibands

The SL under investigation is a quasi-2D system: the electron dispersion is
assumed to be parabolic in the zy-plane and a nearly flat cosine shape in
the z direction. So we can expect a mean value, for the kinetic energy K,
between the 2-dimensional kg1 and the 3-dimensional %k g1'. In this section
we perform this calculation. The starting point is the standard statistical
expression [58]

_ 0 +o0
K= —%m /_ ) e PP)dp . (B.10)

The electron kinetic energy is measured starting from the minimum of the

miniband. eq. (1.30) can be rewritten as e(p) = €, + €, + A(1 — cosE=d)

h
(where A = £ in eq.1.30), and the above definition becomes:
°L 0 oo i 1
K=— Z —ln/ e Palridp, = ZKi =—-+Kj. (B.11)
i=1 op - i=1 p
The mean kinetic energy is K; = Ky, = % for the parabolic degrees of
freedom, while for the z direction it is
_ 0
K,=A—-—InI(3,4A), B.12
55 1(3.8) (B.12)
where
h ™
I(B,A) = 23/ ePheostqe (B.13)
0
If we perform the substitution ¢ = — cos(§)

1
1(3,A) = 2%/ (1— 2)befleq,
-1

= 22‘\/7@ G) To(BA) (B.14)

here T is the factorial function, and Zy(5A) is the Bessel function. Substi-
tuting the last result in eq.(B.12), and remembering % = kpT', we have the

final form

R.(T,A)=A— [% lnIO(ﬂA)} . (B.15)

__1
B=rpT
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Figure B.2: Mean kinetic energy in a SL miniband vs A (half of the miniband
width).

The result can be plotted numerically (Fig.B.2): the graph shows that for
low A the 1D kinetic energy is between 0 and kg7. This value increase with
A and becomes greater than kgT': this is due to the particular form of the

miniband. At larger A the value tends to the parabolic limit kgT'/2.
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Appendix C

Parameters used in the

calculations

C.1 Superlattice parameters

In Table C.1 the values used for the simulation of transport in superlattice

and the source they are taken from.

C.2 Quantum wires parameters

In Table C.2 the physical parameters used for the simulation of transport in
coupled quantum wires. In particular, for the sound velocity, we have used

data relative to transverse acoustic phonons in GaAs.
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Physical quantity Value [Ref.]
longitudinal effective mass in Si m* = 0.97 [59]
transverse effective mass in Si m* = 0.19 [59]
effective mass in SiOo m* = 0.3 [36],[37]
conduction band offset CBO=3.1 eV [60]
lattice temperature T=300 K

Si optical phonon energy E=60 meV [44]

Si optical coupling constant D;K =8-10% eV /cm [44]
oxide nonpolar phonon energy E=132 meV [61]
oxide optical coupling constant DK =2-10° eV/cm [61]
oxide first polar phonon energy E=63 meV [61]

first polar optical constant i — }_ = 0.063 [61]
oxide second polar phonon energy E=153 meV [61]
second polar optical constant i — £+ =10.143 [61]
oxide mean polar phonon energy E=108 meV

mean polar optical constant i — }_ =0.2

oxide screening (miniband transport)

electron density (WS transport)

kp =10° cm™!

n=10% cm™3

asymmetric superlattice device

number of superlattice periods

20

Table C.1: Values of the physical quantities used in the simulation.
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Physical quantity Value
electron effective mass m* = 0.067my
relative dielectric constant € = 13.18

without SAW potential

device length 600 nm
wires width 6 nm
barrier width 2 nm
quantum NOT window length 16 nm
beam splitter window length 8 nm
wave packet extension (eq.6.3) o =25 nm
wave packet energy 35 meV

with SAW potential

device length 600 nm

wires width 10 nm
barrier width 4 nm
quantum NOT window length 7 nm

beam splitter window length 5 nm

SAW wavelength 200 nm
sound velocity in GaAs v, = 3.3 x 10° cm/s
SAW energy 200 meV

Table C.2: Values used for quantum wires simulation.
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